

ELIZADE UNIVERSITY, ILARA - MOKIN, NIGERIA DEPARTMENT: PHYSICAL AND CHEMICAL SCIENCES

FIRST SEMESTER EXAMINATIONS: 2017/2018 ACADEMIC SESSION

COURSE CODE: CHM 205 **COURSE TITLE:** STRUCTURE AND BOMDING

DURATION: 2 HOURS

HOD's SIGNATURE

TABLE OF CONSTANTS:

Speed of light c, 2.997 x108m/s Faraday constant F, 96500 C/mol Gas constant R, 8.314JK⁻¹mol⁻¹ Gas constant R, 8.314 x 10⁻²Lbar K⁻¹mol⁻¹ Mass of proton, 1.672x x10 -27kg

Mass of electron 9.109x10⁻³¹kg

 $1D = 3.34 \times 10^{-30} \text{ C.m}$

Elementary charge e, 1.602 x 10⁻¹⁹C Boltzmann constant k, 1.38 x10⁻²³J/K Planck's constant h, 6.626 x10⁻³⁴Js, Atomic mass unit u, 1.661 x10⁻²⁷kg Mass of neutron, $1.6739 \times 10^{-27} kg$ Avogadro's constant Na, 6.022 x10²³ mol-1

INSTRUCTIONS:

ATTEMPT QUESTION ONE AND ANY OTHER THREE QUESTIONS

QUESTION ONE IS COMPULSORY [30 marks]

- (a) The bond length of a diatomic molecule is 1.63 Å.
 - i. Calculate its dipole moment when the it carries a charge of +1 and -1
 - ii. What is the magnitude of charge on the molecule when the experimental dipole moment is 2.67 D.
 - (b) State the Hund's rule and Pauli Exclusion Principle
 - (c) Predict the magnetic properties of B₂, C₂ and N₂
 - (d) Arrange these molecules: PH₃, NH₃, SbH₃, AsH₃ in order of decreasing polarity.
 - (e) Explain why PF₃ has a dipole moment of 1.03 D and BF₃ has a dipole moment of zero.
 - (f) Using the valence bond theory and/ or valence electron shell theory predict the Geometry of the following molecules

(i)XeF₄ (ii) NH₃ (iii) SF₄, (iv) BeCl₂ (v) CH₄ (vi) BF₃

(Atomic numbers of elements: Xe = 54, Be = 4, B = 5, Cl, 17, F,=9, H = 1, N = 7, S = 16, C = 6)

- 2. (a) Using molecular orbital theory, predict the existence of Be₂ and Be²⁼ (atomic number of
 - (b) Explain why the N O bond length decreases for the following species in the order NO₂ > NO₂ > NO₂ +. Arrange the species in order of increasing bond strength and bond
 - (c) State the limitations to Bohr model of the line spectrum.

[10marks]

3. (a) Using the valence bond theory and by schematic illustrations show the orbital occupancy of electrons in the chlorine in ClO₄ and ClO₃. Describe the geometry of these species.

[8marks]

(b) Sketch the Benzene analogue of Boron nitride

[2marks]

- 4. (a) Explain why the uncertainty principle is not important for macroscopic bodies. [2marks]
 - (b) Distinguish between

[8marks]

- i. Electronegativity and electron affinity.
- ii. Electron affinity and ionization energy
- iii. a polar bond and a polar molecule
- iv. a line spectrum and a continuous spectrum
- 5. (a) Which of the following molecules are isoelectronic species? [2marks] B₂H₄²⁻, NH₃BH₃, C₂H₆, BF₄, NO, C₂H₄, O₂, NF, CH₄, S₂O₇²⁻, P₂O₇⁴⁻
 - (b) Complete the following reactions stating the conditions if any for the reactions. Give at least two uses of the product or a named derivative.

•	
i. $B_2O_{3(1)} + ?$ $\longrightarrow BN_{(s)} + H_2O_{(g)}$	[2marks]
ii. $HClO_4 + P_4O_{10} \longrightarrow ? +?$	[2marks]
iii. $H_3PO_{4(1)} + H_4P_2O_{7(1)} \longrightarrow ? + ?$	[2marks]
iv. $? + NH_4Cl$ \longrightarrow $(Cl_2PN)_3 + HCl$	[2marks]